[logger/test]添加debug级日志记录接收数据长度,测试说话人识别效果。
This commit is contained in:
parent
fc1dac7927
commit
d5b9953905
@ -112,6 +112,9 @@ class ASRFunctor(BaseFunctor):
|
||||
while self._is_running:
|
||||
try:
|
||||
data = self._input_queue.get(True, timeout=1)
|
||||
if data is None:
|
||||
break
|
||||
logger.debug("[ASRFunctor]获取到的数据length: %s", len(data))
|
||||
self._process(data)
|
||||
self._input_queue.task_done()
|
||||
# 当队列为空时, 间隔1s检测是否进入停止事件。
|
||||
|
@ -98,6 +98,9 @@ class SPKFunctor(BaseFunctor):
|
||||
while self._is_running:
|
||||
try:
|
||||
data = self._input_queue.get(True, timeout=1)
|
||||
if data is None:
|
||||
break
|
||||
logger.debug("[SPKFunctor]获取到的数据length: %s", len(data))
|
||||
self._process(data)
|
||||
self._input_queue.task_done()
|
||||
# 当队列为空时, 间隔1s检测是否进入停止事件。
|
||||
|
@ -202,6 +202,9 @@ class VADFunctor(BaseFunctor):
|
||||
while self._is_running:
|
||||
try:
|
||||
data = self._input_queue.get(True, timeout=1)
|
||||
if data is None:
|
||||
break
|
||||
logger.debug("[VADFunctor]获取到的数据length: %s", len(data))
|
||||
self._process(data)
|
||||
self._input_queue.task_done()
|
||||
# 当队列为空时, 间隔1s检测是否进入停止事件。
|
||||
|
@ -224,6 +224,7 @@ class ASRPipeline(PipelineBase):
|
||||
while self._is_running and not self._stop_event:
|
||||
try:
|
||||
data = self._input_queue.get(timeout=self._queue_timeout)
|
||||
logger.debug("[ASRpipeline]获取到的数据length: %s", len(data))
|
||||
# 检查是否是结束信号
|
||||
if data is None:
|
||||
logger.info("收到结束信号,管道准备停止")
|
||||
|
23
tests/spkverify_use.py
Normal file
23
tests/spkverify_use.py
Normal file
@ -0,0 +1,23 @@
|
||||
from modelscope.pipelines import pipeline
|
||||
sv_pipeline = pipeline(
|
||||
task='speaker-verification',
|
||||
model='iic/speech_campplus_sv_zh-cn_16k-common',
|
||||
model_revision='v1.0.0'
|
||||
)
|
||||
speaker1_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_16k-common/repo?Revision=master&FilePath=examples/speaker1_a_cn_16k.wav'
|
||||
speaker1_b_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_16k-common/repo?Revision=master&FilePath=examples/speaker1_b_cn_16k.wav'
|
||||
speaker2_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_16k-common/repo?Revision=master&FilePath=examples/speaker2_a_cn_16k.wav'
|
||||
# 相同说话人语音
|
||||
result = sv_pipeline([speaker1_a_wav, speaker1_b_wav])
|
||||
print(result)
|
||||
# 不同说话人语音
|
||||
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav])
|
||||
print(result)
|
||||
# 可以自定义得分阈值来进行识别,阈值越高,判定为同一人的条件越严格
|
||||
result = sv_pipeline([speaker1_a_wav, speaker1_a_wav], thr=0.6)
|
||||
print(result)
|
||||
# 可以传入output_emb参数,输出结果中就会包含提取到的说话人embedding
|
||||
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav], output_emb=True)
|
||||
print(result['embs'], result['outputs'])
|
||||
# 可以传入save_dir参数,提取到的说话人embedding会存储在save_dir目录中
|
||||
result = sv_pipeline([speaker1_a_wav, speaker2_a_wav], save_dir='savePath/')
|
Loading…
x
Reference in New Issue
Block a user