[Feature] 调整VAD工作流程,规范VAD产出数据规范为 models/audiobinary中的AudioBinary_Chunk;完整测试LogicTrager VAD online流程。

This commit is contained in:
Keeeer 2025-04-15 17:15:13 +08:00
parent 8b69ff195f
commit f7138dcb39
10 changed files with 186 additions and 38 deletions

4
src/functor/__init__.py Normal file
View File

@ -0,0 +1,4 @@
from .vad_functor import VAD
from .model_loader import load_models
__all__ = ["VAD", "load_models"]

View File

@ -7,6 +7,7 @@
import numpy as np
import logging
from typing import List, Optional, Union
from src.models import AudioBinary_Config
# 配置日志
logging.basicConfig(
@ -20,22 +21,19 @@ class AudioChunk:
def __init__(self,
max_duration_ms: int = 1000*60*60*10,
sample_rate: int = 16000,
sample_width: int = 2,
channels: int = 1):
audio_config : AudioBinary_Config = None,
):
"""
初始化音频数据块管理器
参数:
max_duration_ms: 音频池最大留存时间(ms)默认10小时
sample_rate: 采样率默认16KHz
sample_width: 采样位宽默认16bit
channels: 通道数默认1
audio_config: 音频配置信息
"""
# 音频参数
self.sample_rate = sample_rate # 采样率16KHz
self.sample_width = sample_width # 采样位宽16bit
self.channels = channels # 通道数:单声道
self.sample_rate = audio_config.sample_rate if audio_config is not None else 16000 # 采样率16KHz
self.sample_width = audio_config.sample_width if audio_config is not None else 2 # 采样位宽16bit
self.channels = audio_config.channels if audio_config is not None else 1 # 通道数:单声道
# 数据存储
self._max_duration_ms = max_duration_ms
@ -84,6 +82,18 @@ class AudioChunk:
logger.error(f"添加音频数据块时出错: {e}")
return False
def get_chunk_binary(self, start: int = 0, end: Optional[int] = None) -> Optional[bytes]:
"""
获取指定索引的音频数据块
"""
print("[AudioChunk] get_chunk_binary", start, end)
if start >= len(self._chunk):
return None
if end is None or end > len(self._chunk):
end = len(self._chunk)
data = b''.join(self._chunk)
return data[start:end]
def get_chunk(self, start_ms: int = 0, end_ms: Optional[int] = None) -> Optional[bytes]:
"""
获取指定时间范围的音频数据

View File

@ -35,6 +35,7 @@ def load_models(args):
device=args.device,
disable_pbar=True,
disable_log=True,
disable_update=True,
)
# 2. 加载在线ASR模型
@ -47,6 +48,7 @@ def load_models(args):
device=args.device,
disable_pbar=True,
disable_log=True,
disable_update=True,
)
# 3. 加载VAD模型
@ -59,6 +61,7 @@ def load_models(args):
device=args.device,
disable_pbar=True,
disable_log=True,
disable_update=True,
)
# 4. 加载标点符号模型(如果指定)
@ -72,6 +75,7 @@ def load_models(args):
device=args.device,
disable_pbar=True,
disable_log=True,
disable_update=True,
)
else:
models["punc"] = None

View File

@ -0,0 +1,60 @@
from funasr import AutoModel
from typing import List, Dict, Any
from src.models import VADResponse
from src.models import AudioBinary_Config
from src.functor.audiochunk import AudioChunk
from src.models import AudioBinary_Chunk
from typing import Callable
class VAD:
def __init__(self,
VAD_model = None,
audio_config : AudioBinary_Config = None,
callback: Callable = None,
):
# vad model
self.VAD_model = VAD_model
if self.VAD_model is None:
self.VAD_model = AutoModel(model="fsmn-vad", model_revision="v2.0.4", disable_update=True)
# audio config
self.audio_config = audio_config
# vad result
self.vad_result = VADResponse(time_chunk_index_callback=callback)
# audio binary poll
self.audio_chunk = AudioChunk(
audio_config=self.audio_config
)
self.cache = {}
def push_binary_data(self,
binary_data: bytes,
):
# 压入二进制数据
self.audio_chunk.add_chunk(binary_data)
# 处理音频块
res = self.VAD_model.generate(input=binary_data,
cache=self.cache,
chunk_size=self.audio_config.chunk_size,
is_final=False)
# print("VAD generate", res)
if len(res[0]["value"]):
self.vad_result += VADResponse.from_raw(res)
def set_callback(self,
callback: Callable,
):
self.vad_result.time_chunk_index_callback = callback
def process_vad_result(self, callback: Callable = None):
# 处理VAD结果
callback = callback if callback is not None else self.vad_result.time_chunk_index_callback
self.vad_result.process_time_chunk(
lambda x : callback(
AudioBinary_Chunk(
start_time=x["start_time"],
end_time=x["end_time"],
chunk=self.audio_chunk.get_chunk(x["start_time"], x["end_time"])
)
)
)

View File

@ -5,7 +5,7 @@
"""
import logging
from typing import Any, Dict, Type
from typing import Any, Dict, Type, Callable
# 配置日志
logging.basicConfig(
@ -88,57 +88,62 @@ class AutoAfterMeta(type):
5->6 __after__push_result_queue 调用回调函数
"""
from src.functor import VAD
from src.models import AudioBinary_Config
from src.models import AudioBinary_Chunk
from typing import List
class LogicTrager(metaclass=AutoAfterMeta):
"""逻辑触发器类"""
def __init__(self,
audio_chunk_max_size: int = 1024 * 1024 * 10,
sample_rate: int = 16000,
channels: int = 1,
on_result_callback: Callable = None,
audio_config: AudioBinary_Config = None,
result_callback: Callable = None,
models: Dict[str, Any] = None,
):
"""初始化"""
# 存储音频块
self._audio_chunk = []
self._audio_chunk : List[AudioBinary_Chunk] = []
# 存储二进制数据
self._audio_chunk_binary = b''
self._audio_chunk_max_size = audio_chunk_max_size
# 音频参数
self._sample_rate = sample_rate
self._channels = channels
self._audio_config = audio_config if audio_config is not None else AudioBinary_Config()
# 结果队列
self._result_queue = []
# 回调函数
self._on_result_callback = on_result_callback
# 聚合结果回调函数
self._aggregate_result_callback = result_callback
# 组件
self._vad = VAD(VAD_model = models.get("vad"), audio_config = self._audio_config)
self._vad.set_callback(self.push_audio_chunk)
logger.info("初始化LogicTrager")
def push_binary_data(self, chunk: bytes) -> None:
"""
添加音频块
压入音频块至VAD模
参数:
chunk: 音频数据块
"""
if self._audio_chunk is None:
logger.error("AudioChunk未初始化")
return
self._audio_chunk_binary += chunk
logger.debug(f"添加音频块,大小: {len(chunk)}字节")
# print("LogicTrager push_binary_data", len(chunk))
self._vad.push_binary_data(chunk)
self.__after__push_binary_data()
def __after__push_binary_data(self) -> None:
"""
添加音频块后处理
VAD检测将检测到的VAD压入音频块
"""
# VAD检测
pass
# 压入音频块 push_audio_chunk
# print("LogicTrager __after__push_binary_data")
self._vad.process_vad_result()
def push_audio_chunk(self, chunk: bytes) -> None:
def push_audio_chunk(self, chunk: AudioBinary_Chunk) -> None:
"""
压入音频块
音频处理
"""
print("LogicTrager push_audio_chunk [{}ms:{}ms] (len={})".format(chunk.start_time, chunk.end_time, len(chunk.chunk)))
self._audio_chunk.append(chunk)
def __after__push_audio_chunk(self) -> None:

3
src/models/__init__.py Normal file
View File

@ -0,0 +1,3 @@
from .audiobinary import AudioBinary_Config, AudioBinary_Chunk
from .vad import VADResponse
__all__ = ["AudioBinary_Config", "AudioBinary_Chunk", "VADResponse"]

16
src/models/audiobinary.py Normal file
View File

@ -0,0 +1,16 @@
from pydantic import BaseModel, Field
class AudioBinary_Config(BaseModel):
"""二进制音频块配置信息"""
audio_data: bytes = Field(description="音频数据", default=None)
chunk_size: int = Field(description="块大小", default=100)
chunk_stride: int = Field(description="块步长", default=1600)
sample_rate: int = Field(description="采样率", default=16000)
sample_width: int = Field(description="采样位宽", default=2)
channels: int = Field(description="通道数", default=1)
class AudioBinary_Chunk(BaseModel):
"""音频块"""
start_time: int = Field(description="开始时间", default=0)
end_time: int = Field(description="结束时间", default=0)
chunk: bytes = Field(description="音频块", default=None)

View File

@ -38,11 +38,16 @@ class VADResponse(BaseModel):
"""处理时间块"""
# print("Enter process_time_chunk", self.time_chunk_index, len(self.time_chunk))
while self.time_chunk_index < len(self.time_chunk) - 1:
if self.time_chunk[self.time_chunk_index].end != -1:
index = self.time_chunk_index
if self.time_chunk[index].end != -1:
x = {
"start_time": self.time_chunk[index].start,
"end_time": self.time_chunk[index].end
}
if callback is not None:
callback(self.time_chunk_index)
callback(x)
elif self.time_chunk_index_callback is not None:
self.time_chunk_index_callback(self.time_chunk_index)
self.time_chunk_index_callback(x)
else:
print("[Warning] No callback available")
self.time_chunk_index += 1
@ -125,3 +130,14 @@ class VADResponse(BaseModel):
result_str += f"[{value_item.start}:{value_item.end}]\n"
return result_str
def __iter__(self):
return iter(self.time_chunk)
def __next__(self):
return next(self.time_chunk)
def __len__(self):
return len(self.time_chunk)
def __getitem__(self, index):
return self.time_chunk[index]

View File

@ -1,4 +1,4 @@
from tests.modelsuse import vad_model_use_online
from tests.modelsuse import vad_model_use_online_logic
vad_result = vad_model_use_online("tests/vad_example.wav")
vad_result = vad_model_use_online_logic("tests/vad_example.wav")
print(vad_result)

View File

@ -1,6 +1,6 @@
from funasr import AutoModel
from typing import List, Dict, Any
from src.pydantic_models import VADResponse
from src.models import VADResponse
import time
def vad_model_use_online(file_path: str) -> List[Dict[str, Any]]:
@ -32,6 +32,36 @@ def vad_model_use_online(file_path: str) -> List[Dict[str, Any]]:
# print(item)
return vad_result
def vad_model_use_online_logic(file_path: str) -> List[Dict[str, Any]]:
from src.logic_trager import LogicTrager
import soundfile
from src.config import parse_args
args = parse_args()
from src.functor.model_loader import load_models
models = load_models(args)
chunk_size = 200 # ms
from src.models import AudioBinary_Config
import soundfile
speech, sample_rate = soundfile.read(file_path)
chunk_stride = int(chunk_size * sample_rate / 1000)
audio_config = AudioBinary_Config(sample_rate=sample_rate, sample_width=2, channels=1, chunk_size=chunk_size)
logic_trager = LogicTrager(models=models, audio_config=audio_config)
for i in range(len(speech)//chunk_stride+1):
speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride]
logic_trager.push_binary_data(speech_chunk)
# for item in items:
# print(item)
return None
if __name__ == "__main__":
vad_result = vad_model_use_online("tests/vad_example.wav")
# vad_result = vad_model_use_online("tests/vad_example.wav")
vad_result = vad_model_use_online_logic("tests/vad_example.wav")
# print(vad_result)