from modelscope.pipelines import pipeline sv_pipeline = pipeline( task='speaker-verification', model='iic/speech_campplus_sv_zh-cn_16k-common', model_revision='v1.0.0' ) speaker1_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_16k-common/repo?Revision=master&FilePath=examples/speaker1_a_cn_16k.wav' speaker1_b_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_16k-common/repo?Revision=master&FilePath=examples/speaker1_b_cn_16k.wav' speaker2_a_wav = 'https://modelscope.cn/api/v1/models/damo/speech_campplus_sv_zh-cn_16k-common/repo?Revision=master&FilePath=examples/speaker2_a_cn_16k.wav' # 相同说话人语音 result = sv_pipeline([speaker1_a_wav, speaker1_b_wav]) print(result) # 不同说话人语音 result = sv_pipeline([speaker1_a_wav, speaker2_a_wav]) print(result) # 可以自定义得分阈值来进行识别,阈值越高,判定为同一人的条件越严格 result = sv_pipeline([speaker1_a_wav, speaker1_a_wav], thr=0.6) print(result) # 可以传入output_emb参数,输出结果中就会包含提取到的说话人embedding result = sv_pipeline([speaker1_a_wav, speaker2_a_wav], output_emb=True) print(result['embs'], result['outputs']) # 可以传入save_dir参数,提取到的说话人embedding会存储在save_dir目录中 result = sv_pipeline([speaker1_a_wav, speaker2_a_wav], save_dir='savePath/')